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Abstract
It is shown that a momentum boost technique applied to the extended Kohn–
Sham scheme enables the computational determination of the Mott insulating
transition. Self-consistent solutions are given for correlated electron systems
by first-principles calculations defined by the multi-reference density functional
theory, in which the effective short-range interaction can be determined by the
fluctuation reference method. An extension of the Harriman construction is
made for the twisted boundary condition in order to define the momentum-
boost technique in the first-principles manner. For an effectively half-filled-
band system, the momentum-boost method tells that the period of a metallic
ground state by the local density approximation (LDA) calculation is shortened
to the least period of the insulating phase, indicating the occurrence of the Mott
insulating transition.

1. Introduction

Detection of the Mott insulating transition is a desirable function for first-principles
calculations, which has been demanded for years. A recently developed multi-reference
density functional theory with the fluctuation reference method defines a self-consistent first-
principles calculation, in which a short-range correlation effect is explicitly included [1–3].
This technique is a generalization of the Kohn–Sham scheme of the electronic structure
calculation [4, 5]. Incorporation of the effective many-body system to determine the total
energy and the single-particle charge density of the electronic state became possible through
(1) the introduction of a fluctuation-counting term and (2) the reformulation of the exchange
correlation energy functional as a residual exchange correlation energy functional. The
effective Hamiltonian appearing in the theory is a kind of Hubbard model [6] or Anderson
model [7]. The LDA + U Hamiltonian [8] is derived as an approximation for the residual
exchange correlation functional [9].

In this short paper, I show a technique to determine the Mott insulating phase in this first-
principles calculation. The method is an application of the momentum boost technique known
in the literature [10, 11]. To introduce the momentum boost method in the density functional
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theory, one needs to show the N representability. This is done by extending the Harriman
construction [12, 13] for the twisted boundary condition. A test calculation will be shown using
a simple artificial system, which may be represented by a one-dimensional Hubbard model. In
the last part, I will summarize the present work.

2. Momentum boost technique

I consider a Born–von-Karman boundary condition with a twist. Consider an array of atoms in
one dimension and let L be the number of atoms in the direction, which is called the x direction
below. Formally using a phase 2π�/�0 with 0 � � < �0 and a unit flux �0, I introduce a
twisted boundary condition in this x direction:

�(x1, . . . , (r j + Laex , σi ), . . . , xN ) = exp(2π i�/�0)�(x1, . . . , (r j , σi ), . . . , xN ), (1)

c†
N+1,σ = exp (2π i�/�0) c†

1,σ . (2)

Here, I used a combined coordinate x j = (r j , σ j ) with the space and spin coordinates. ex is
a unit vector and a is the lattice constant in the x direction. � is a many-body wavefunction
and c†

i,σ is a creation operator defined with a properly determined Wannier basis φi (r). Indeed,
determining a Wannier transformation by fixing a gauge in the unitary transformation [14], the
set of φi (r) is uniquely determined in each self-consistent step of the extended Kohn–Sham
scheme [2].

Using another gauge transformation, the twisted boundary condition is represented by
shifted k vectors, k = ( 2πm

La + 2π�
La�0

, ky, kz), for the single-particle Bloch orbitals. Here m
is an integer within a range of 0 � m < L. From the single-particle energy εn(k), one may
construct a tight-binding model written in c†

i,σ and ci,σ .
Determining the eigen energy of the effective fermion system, one has an energy-flow

diagram as a function of �. If the system is a metal, the flow given by adiabatic connection
of the ground state should show a long extended AB period, while the period has to be �0,
when there is a charge gap due to formation of a Mott gap. Although the density functional
theory utilized in the present work is the ground-state formulation, one can have a signal of the
change in the period as the disappearance of a cusp in the lowest-energy flow. In the case of
the Mott insulator, the flux line becomes a smooth curve without any cusp. The appearance of
the isolated lowest flow line implies uniqueness of the ground state separated by a gap from
charge excitations in the whole range of twist and thus indicates the formation of the Mott gap.
If one has difficulty in finding the change in the period with a three-dimensional sample, one
may consider a one-dimensional setup using a needle-like sample.

Before discussing the result, I show that the N representability of the present problem is
guaranteed. In the present setup, only the boundary condition in the x direction is a twisted
one. Thus I consider a slice of the charge density ρ̃(x) = ρ(r) fixing y and z coordinates for
simplicity. We are seeking ϕk(x) satisfying

ρ̃(x) =
∑

k

λk |ϕ(x)|2, (3)

where k is an integer, 0 � λk � 1, and
∑

k

λk = N . In the twisted boundary condition,

however, ρ̃(x + La) obeys the periodic boundary condition as

ρ̃(x + La) =
∫

dσ1 dx2 · · · dxN�((r1 + Laex , σ1), x2, . . . , xN )∗

× �((r1 + Laex , σ1), x2, . . . , xN )
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=
∫

dσ1dx2 · · · dxN�((r1, σ1), x2, . . . , xN )∗�((r1, σ1), x2, . . . , xN )

= ρ̃(x). (4)

Here, integration with respect to σ j should be interpreted as a summation. Thus, we can readily
prepare the orbital ϕk(x) obeying the twisted boundary condition as,

ϕk(x) = ρ̃(x)

N

1/2

exp(ik f (x) + i2π�/�0), (5)

with

f (x) = 2π

N

∫ La

0
ρ̃(x ′) dx ′. (6)

We can immediately show that a set of ϕk(x) forms a complete orthonormal and that
∑

k

λk |ϕ(x)|2 = 1

N
ρ̃(x)

∑

k

λk = ρ̃(x). (7)

Using the orbital wavefunction ϕk(x) obeying the twisted boundary condition, we can show the
existence of a many-body state |�〉 whose coordinate expression is the single Slater determinant
made of ϕk(x).

3. One-dimensional hydrogen array

As a test calculation, I consider a one-dimensional hydrogen array. The system is denoted by an
outer unit cell with ten atoms for the many-body calculation and an inner unit cell with a single
atom for the single-particle problem. The lattice parameters for the inner cell are a = 2 Å and
b = c = 10 Å. The determination of U may be achieved by setting a reference calculation [2].
Here, to show the change in the period explicitly, I consider U/t as a parameter and perform
only the self-consistent calculation for the extended Kohn–Sham system. Here, t is the value
of the nearest-neighbour transfer parameter. Note that the present system is represented by
a tight-binding model with long-range hopping terms. For the exchange–correlation energy
functional, I utilized the Perdew–Zunger parameterization of the Ceperley–Alder diffusion
Monte Carlo data [15]. The Troullier–Martins soft pseudopotential is used with a cutoff energy
of 20 (Ryd) [16]. This setup is confirmed to be accurate enough for the discussion below by
increasing the parameters. The numerical diagonalization with the Lanczos algorithm is used
to obtain the many-body state of the first-principles Hubbard model.

The result of the momentum boost is depicted in figure 1. For U = 0, the LDA calculation
shows a crossing in energy flow lines. In this case, the lowest energy flow can be traced, since
the constrained LDA calculation fixing the filling of each k point is available. Once a finite U is
introduced, the many-body calculation automatically concludes the lowest branch of the energy
flows. In this system, we see a continuous change in the energy flow which has an energy gap
structure at � = �0/2. This result is qualitatively the same as the single-band Hubbard model
with only the nearest-neighbour hopping [11]. If the fluctuation reference method is applied
precisely, a finite value of U is expected, since the inter-atomic distance of 2 Å is in a strong-
correlation regime for the hydrogen molecule [2]. Thus the present result gives a concrete test
for the method of determination of the Mott insulator from first principles.

4. Summary

I have shown that the momentum boost method is formulated rigorously in density functional
theory. The N representability is shown for the twisted boundary condition. Using the multi-
reference density functional theory (MR-DFT), we are able to construct an effective interacting
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Figure 1. The ground-state energy of a hydrogen array system as a function of the phase � in
the boundary condition. The system has ten atoms. The value of U/t is set to be 0, 1, 2, . . . , 5
with t being the nearest-neighbour transfer parameter. For the case of U = 0 (LDA calculation),
crossing of the flow lines occurs at � = �0/2, while the crossing becomes anti-crossing due to the
charge-gap formation for finite U .

fermion system, which may undergo the Mott insulating transition. The momentum boost
technique is applicable for this problem to detect the transition. In a realistic system, the
formation of the Mott gap by applied pressure or by effective carrier doping could be seen
as a change in the period of the lowest energy flow.
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